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LElTER TO THE EDITOR 

Gowdy S1 63)s' and S3 inhomogeneous cosmological models 

J-L Hanquint and J Demaret 
Institut d'Astrophysique, Universitd de Liege, B 4200 Cointe-Ougree, Belgium 

Received 26 October 1982 

Abstract. The ADM-type Hamiltonian formulation of Gowdy S'@3s2 and S3 vacuum 
inhomogeneous cosmological models is given. The canonical and constraint equations are 
explicitly solved and the asymptotic behaviour of the most general solution in the neigh- 
bourhood of the initial and final inhomogeneous scalar singularities is shown to be of the 
generalised Kasner type. 

Gowdy's closed empty cosmological models, which can be thought of as 
inhomogeneous models filled with gravitational waves locally indistinguishable from 
Einstein-Rosen cylindrical waves (cf Gowdy, 197 1, 1974), belong to three different 
types following the topology of their compact space sections which can be of the 
3-torus (S1@S1@S1), the three-handle (S1@S2) or the 3-sphere (S3) type. 

Although the simplest model-with the 3-torus topology-has been intensively 
used in recent cosmological work, mostly for the purpose of studying particle creation 
in the early universe (cf Berger 1972, Misner 1973), the two other types of models 
do not seem to have received much attention from the cosmologists. However, they 
possess very interesting characteristics which could be fruitfully used in the framework 
of research work connected with the design of more general models than the Friedmann 
ones to represent the geometry of the early universe. More precisely, the Gowdy S 3  
model appears as an empty inhomogeneous generalisation of the closed Friedmann 
models (whose space-like sections have the same topology), and both S 3  and S1@S2 
models possess an initial as well as a final singularity, whose nature it is interesting 
to elucidate. 

We give here the principal results of a detailed study of the fundamental properties 
of Gowdy S1@S2 and S' models based on ADM-type Hamiltonian methods, which 
lead to a reduced ADM-Hamiltonian suitable for studies of the canonical quantisation 
of the models and of the phenomenon of creation of particles in the framework of 
the usual semiclassical approach initiated by Parker (1966). Moreover, the resolution 
of the canonical and constraint equations enables one to obtain exact analytic solutions 
for the classical models and to discuss the nature of their singularities. 

The metric of Gowdy SIBS2 and S3 space-times (characterised by two mutually 
orthogonal space-like Killing vector fields) has the form (cf Gowdy, 1971, 1974) 

ds2/L2= eA(d82-dr2)+R(eX+Y du2+e-X-Y dS2). (1) 
The angles 8 and S describe the two-spheres in the case of the three-handle S'@S2 
models, while in the case of S3 models, the angles 8, (T - S and u + S are the Euler 
angles characterising the 3-spheres. 

Boursier IRSAI. 
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The functions A, R,  X and Y depend only on coordinates t and 8. L is a constant 
length so chosen that the maximum value of R is equal to 1; in the following, L will 
be put equal to 1. The ranges of variation of the variables, for both Gowdy models, 
are 

t E (0, T ) ,  8 E LO, TI, U and S E [0,27r]. 

The difference between the (0,O) and (1, 1) components of Einstein's vacuum field 

RI'-R = 0 ( 2 )  

(the dots and primes denote respectively differentiation with respect to t and 8). 
The solution R =sin 8 sin t leads to the S' @ S 2  and S 3  Gowdy models (a series 

of matching conditions is then necessary to ensure the validity of Einstein's field 
equations for 8 = t and 8 + r = 7r (cf Gowdy, 1971, 1974)). Y is chosen so as to express 
the metric of 3-spaces of Gowdy's models as closely as possible in terms of the usual 
metrics for 3-handles and 3-spheres, i.e. 

equations, for the metric ( l ) ,  gives the following result: 

Y=-1nR 

Y = -In tan 8/2 

for the S' @S2 topology, 

for the S 3  topology. 

Moreover, to avoid conical singularities at 8 = 0 and 8 = T ,  one has to impose the 
following conditions on the functions A and X: 
A'(?, 0 )  = A'(t, 7r) = 0, X'( t ,  0 )  =X ' ( t ,  7r) = 0, (4f, 4") 

(4"'a ) 

(4"'b) 

The starting point of the Hamiltonian formulation of these Gowdy universes is the 
form (1) of the metric with the function Y replaced by its value (3a) or (3b) and R 
by sin 8 sin T, where T is a function of t and 8 increasing from 0 to 7r as t runs from 
0 to 7r, i.e. in the cases of S ' @ S 2  and S 3  topologies (respectively denoted by the 
indices 'a' and 'b'): 

X ( t ,  O)+A(t, 0 )  = X ( t ,  r ) + A ( t ,  7r) =ln(sin3 t )  for the S ' @ S 2  topology, 

X( t ,  0) +A(t ,  0 )  = X(r,  7r) +A(r, 7r) = In(; sin t )  for the S 3  topology. 

( g i j ) a  = diag(eA, ex, sin2 T e-X), 

( g i j ) b  = diag(eA, $ sin T ex, sin T e-X), 

in the Cartan frame respectively characterised by 

(6a ) 

(66) 

3 w =sin 8 dS, 2 w'=d8, w =du,  

w'=d$, 3 w 2  = 2 cos(8/2) du, 

The corresponding diagonal conjugate momenta are given in both cases by 

(rii)b = (e-A7rA, e-"(7rT/cos T + 7rx/sin T ) ,  ex(7rT/cos T - 7rx/sin T ) ) ,  

where T T ,  rA, 7rx are the momenta conjugate to T, A and X respectively. 

that c = 1 and 16rG = 1) 

w = 2 sin (8/2) dS. 

(7rii)a = (e-A7rA, e-x(7r, +&rT/cos T ) ,  eX(rT/sin 2T)) ,  ( 7 a )  

(76 1 

The action for the gravitational field can then be written as (units are chosen so 
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where the integration has to be extended to the whole universe. N and Ni are the 
usual lapse and shift functions and X and xi the super-Hamiltonian and super- 
momenta vacuum constraints. The expressions of X and Xi, calculated with the help 
of a Reduce 2 algebraic program (cf Moussiaux et a1 1982), are the following: 

%‘a = eAI2xa = (1/2 sin T ) ( r i  -2rA7rT tan T - 2 r ~ r x )  

+ is in  T[X”-2 cot 8(A’+X’)-4] 

+cos T[2T1’-T’(A+x’-4cot 6)]-2T”sin T, (9a 1 
(96) 2; =eA%’: =7rTT’+7rTTAA’+7rXX‘+(l/sinB)[7rT tanTcos8-2(rA sin e) ’ ] ,  

+asin T[Xr2-(2/sin B)(cos 8A’+X’)-3] 

+ t cos T[2T” - T’(A‘- 3 cot e ) ]  + TI2( 1 + 3 sin2 T)/sin T, (loa) 
2: = e^& = TTT’ + TAA’ + rxX’ 

+(sin e ) - ’ [ r T  tan T cos 8 - rx -2(rA sin e)‘], (106) 

%‘E =x; = O .  (10c) 
Integration in (8) on (T and 6 gives for the action: 

where ZD = &@? + Nlg’  is Dirac’s Hamiltonian density; N = N 
and ea  = 1 and & b  = 2. 

and Nl = N1 e-A 

The ADM reduction process consists of three steps. 
(a) Perform the canonical transformation 

T A  = ( - l / e  sin @)(cos TB)’, 

ITT = i j ~  + BTB tan T. 

A ’ =  ( - E  sin B/cos T)7rB, (13a, 6 )  

(13c) 
(b) Impose the two coordinate conditions 

~ ( t ,  e )  = t ,  B ( t ,  e )  = -COS e. ( 1 4 ~  6 )  
(c) Solve the constraint equations 2 = 0 and 2’ = 0, respectively for i jT and rB, 

with St’ and X’ respectively given by (9a) and (96) or (loa) and (106). 
The final result is the action integral 
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These expressions have been obtained by discarding integrated terms which can be 
shown to vanish due to the imposition of condition (4a) or (46). 

The final form of the constraint %” = 0, which serves to evaluate the momentum 
conjugate to B = -cos e, i.e. rB, leads to the relations 

rB (sin2 e - sin2 t )  +cos2 t cos e(.rrxx’ tan e + i jT  tan t + 2 cos t )  = o 
(case S ’ @ S 2 ) ,  (17a) 

.rrB(sin2 e - sin2 t )  +cos2 t cos e(rxx’ tan e - .rrx cos e + i jT  tan t +cos t )  = o 
(case S 3 ) ,  (176) 

where i jT has to be expressed in terms of T X ,  X and X ‘  by using equation (9a) or 
( loa)  in which the two first steps of the reduction process are explicitly performed. 

The canonical equations corresponding to the fully reduced Hamiltonian are given 
by 
X = (sin e)-’(s/s.rrx)(sin e%ADM), (18a, 6 )  

where S/Sf denotes the functional derivative with respect to f .  In particular, (186) 
takes the following form for both types of Gowdy models: 

(19) 

7jx = (sin e)-’(s/sX)(sin e%ADM), 

(l/sin t)(sin tX)’-( l /s in  @)(sin exf)’= o 
which is equivalent to a combination of Einstein’s field equations (cf Gowdy 1974). 
This equivalence shows the coherence of the reduction process used above. 

Turning now to the problem of the search for exact solutions of Einstein’s field 
equations for these Gowdy models, we note first of all that the most general regular 
solution of equation (19) can be written as 

where P, and Q, are Legendre functions of the first and second kind and a, and Pn 
are adjustable constant coefficients. The possible values of these coefficients are 
constrained by the relations 

(1 a Z n ,  C a Z n + l )  = (*2, Y )  or (0, Y * 2) with y = E - 1 (21a, 6 )  

which are deduced from the constraint equations (17a) and (176), with sin2 t -sin2 8 = 
0; the constraints (21a) are in fact equivalent to Gowdy’s matching conditions. 

The constraint equations (17a) and (176) can then be solved for rB, thus for A’ 
(cf (136)). The resulting expression is then integrated to give explicitly A(t,  e) ,  by 
taking into account (21a) as well as ( 4 ” ’ ~ )  or (4”’6), these last conditions giving rise, 
as shown below, to another constraint on the constants a, and P,. 

However, in the most general case (n +a)) this resolution process appears rather 
intricate to apply. An explicit complete solution has been obtained in the case of the 
three first coupled modes (n =0, 1,2) ;  this solution is presented, for both types of 
Gowdy models, in the appendix. We have checked that it is consistent with the 
solution built by Gowdy (1975) by solving directly Einstein’s field equations, after 
the corrections of a certain number of mistakes appearing in Gowdy’s work. In fact, 
Gowdy has proposed a general solution for the field equations; however, it is so 
complicated and intricate that its general expression cannot reasonably be very useful; 
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the scheme used here and based on the Hamiltonian formalism could, in our opinion, 
lead more easily to the explicit form of the exact solution at any order. 

In any case, we have been able to derive the following explicit form for the most 
general exact solution in the neighbourhood of the initial ( t  = 0) and final ( t  = T) 
singularities of these Gowdy models; the asymptotic expressions of the components 
of the metric tensor limited to the first order in t (or (T - t ) )  are the following: 

9 (22a 1 (x-Z+v)(x+v) /2  gll = -gw - ~ 1 ( e w ~ 2 )  

(where t has to be replaced by x - t in the neighbourhood of the final singularity). 
fl(t9) and f2(e) are known functions of cos 8 only and x is defined by 

03 

= - C T “ + ~ ~ , , P ~ ( c o s  e) 
n =O 

where T = +1 (respectively -1) in the neighbourhood of t = 0 ( t  = x ) .  
As a byproduct of this derivation of the asymptotic behaviour of the metric of 

these Gowdy universes, we have derived the general form of the second restriction 
on the constants a,, and Pn, implied by equations (4“’a) and (4”‘b): 

(the restricted form of these general constraints for the modes n = 0, 1,  2 appears 
explicitly in the appendix). 

The principal features of the singularities of these models can be derived from the 
asymptotic expressions (22a)-(22c). 

First of all, the curvature invariant RclPyJ?uPYS can be shown to become infinite 
for t + 0 or x ,  implying that the initial and final singularities of these Gowdy universes 
are scalar curvature singularities in Ellis and Schmidt’s (1977) sense. The spatial 
volume of these universes can also be shown to vanish at both singularities. 

These singularities are inhomogeneous and for a given 0, two types of local 
behaviour are possible: one of the gii tends to infinity while the two others vanish for 
t + 0 or x (cigar-type behaviour characteristic of spatially homogeneous models), or 
two gii have a finite limit value different from zero while the third one tends to zero 
for t + 0 or x (pancake-like behaviour characteristic of spatially homogeneous models). 

The asymptotic solutions (22a)-(22c) display, in fact, a generalised Kasner-like 
behaviour typical of a general cosmological solution with a time singularity (cf Belinskii 
et al 1970). The sign of the exponents of t in solution (22a)-(22c) can change with 
8 and so the direction of the Kasner axis will change with 8 ;  an alternation of ‘cigar’ 
and ‘pancake’ will thus appear along the &direction. 

It is also interesting to remark that the initial and final singularities will not be 
precisely identical, in the sense that for the same value of 8, the initial singularity can 
be of the ‘cigar’ type while the final one would be of the ‘pancake’ type, and if they 
are both of the ’cigar’ type, the direction of the Kasner axis will not necessarily be 
the same. 

We thank Dr A Moussiaux and Mr P Tombal for assistance in the use of the Reduce 
2 general relativistic algebraic programs. 



L10 Letter to the Editor 

Appendix 1. Exact solutions for the Gowdy models (modes 0, 1,2) 

With the convention 0, = In tan(t/2) -P,/a,, the solution for X, for both types of 
models, can be written as 

x =X,+X,+Xz 

with 

xo = -aooo, Xi = -a1 COS 8 (COS t 01 + I), 

xz = (-az/4)(3 COS’ 8 - i)[(3 COS’ t - i)02 + 3 COS t ] .  

In the case S’@S’ ,  the expression of the function A corresponding to the function 
X is 

A =A*-X+ln(sin’ t )  

with A *  given by 

A* = :a: sin’e(sin’ to: - 2 cos t o1 - 1) 
+A 32aZ 2 sin’ 8{-3 sin’ tO:[sin’ 8(8 - 9 sin’ t )  - 8 cos’ t ]  

+ 2  cos t02[3 sin’ 8(2-9 sin2 t )+24  sin2 t -(8/a2)(ao+a2)] 

+ 3  sin28(5-9sin2t)+24sin2t-( l6/a2)(a~+cr2)}  

+tala2 cos 8 sinZe[3 sin’ t cos t 0 ~ 0 ~ - ( 1  -3  sin’ t)Ol 

+ (2 - 3 sin2t)02 - 3 cos t]  

and with the following conditions on a, and Pn : 

(ao+az ,  al) = (*2,0) or (0, *2) and P 2 ~ 1 + P 1 ~ o = O .  

A =A*-cos8 (Xo+Xz(t, 0))-Xl(t, O)+ln($sin t )  

In the case S 3 ,  the function A is 

with 

(ao + a’, a - (*2,1) or ( 0 , l  f 2) and P h 1 -  1) + P l C u O  = P o  = 0. 

References 

Belinskii V A, Khalatnikov I M and Lifshitz E M  1970 A d o .  Phys. 19 525 
Berger B K 1972 A cosmological model illustrafing parficle motion through quanfum graviton production, 

PhD Thesis, Unioersity of Maryland (available from University Microfilms, Ann Arbor, Michigan) 
Ellis G F R and Schmidt B G 1977 Gen. Rel. Grau. 8 915 
Gowdy R H 1971 Phys. Reo. Leff.  27 826 
- 1974 Ann.  Phys., NY 83 202 
- 1975 J. Math. Phys. 16 224 
Misner C W 1973, Phys. Reo. D8 3271 
Moussiaux A, Tombal P and Demaret J 1982 Gen. Re[. Grao. in press 
Parker L 1966 The creation ofparticles in an expanding Unioerse, PhD Thesis, Haroard Unioersiry (available 

from University Microfilms, Ann Arbor, Michigan) 


	Untitled

